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Abstract—Set containment search, which aims to retrieve all set
records containing a specific query set, has received considerable
attention. Meanwhile, due to the dramatic growth of data, data
owners tend to outsource their data to the cloud and deploy
the cloud server to offer the set containment search services.
However, as the cloud server is not fully trustable and the data
may be sensitive, a straightforward strategy for the data owners
is to encrypt the data before outsourcing them. Although the
encryption technique can preserve data privacy, it inevitably
hinders the functionality of set containment search. Many existing
studies on the set containment search over outsourced data still
suffer from the search efficiency and security issues. In this paper,
aiming at the above issues, we propose an efficient and privacy-
preserving set containment search scheme. Specifically, we first
deploy an asymmetric scalar-product-preserving encryption tech-
nique to design a set containment/intersection encryption (SCIE-
Enc) scheme. Then, we build a radix tree to represent the set
records. Based on the radix tree and SCIE-Enc construction, we
present our scheme that can achieve efficient set containment
search while preserving the privacy of set records, query sets,
and query results, as indicated in our security analysis and
performance evaluation.

Index Terms—Set containment search, cloud computing, scalar
product computation, radix tree, privacy-preserving

I. INTRODUCTION

The advance of Internet of Things (IoT) [1], social network-
ing [2], and applied artificial intelligence [3], among others,
has promoted an increasing amount of data generated day
by day. As reported in [4], there will be around 40 trillion
gigabytes of data in 2020 and the big data market is expected
to increase by 14%. Obviously, the huge volumes of data
put a great pressure on data owners’ storage and computing
capability. As a result, many organizations and individuals tend
to outsource their local data to a powerful cloud and deploy
the cloud to manage the data. However, since the cloud server
is not fully trustable and the data may contain some sensitive
information, a straightforward strategy for the data owners is
to outsource encrypted data to the cloud [5], [6]. Although the
data encryption technique can protect the data confidentiality
in cloud, it will inevitably affect the data utility, e.g., the
popular set containment search. Essentially, the concept of
set containment search is to find the containment relationship
between sets, which has been employed in many real-world
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applications. For instance, in the field of job hiring, both the
skills mastered by a job applicant and the required skills for
a job can be regarded as sets. Then, for a given job recruiter,
the set containment search can help him/her to identity which
job applicants are qualified for the job, as shown in Fig. 1.
Basically, the set containment search can be defined as “return
the identities of set records in the dataset X that contain the
query set Q”, i.e., {idi|Q ⊆ Xi, Xi ∈ X}, where idi is the
identity of Xi. Although the set containment search has been
widely studies [7]–[10], most of existing studies focus on the
set containment search over the plaintext domain and are not
applicable to our encrypted outsourced data scenario.

ID Skills

𝐢𝐝𝟏 Java, C++, SQL

𝐢𝐝𝟐 Python, C++, HTML

𝐢𝐝𝟑 C#, SQL, HTML

𝐢𝐝𝟒 Java, C#, SQL, HTML

Query result: {𝐢𝐝𝟏, 𝐢𝐝𝟒}

Job Recruiter Applicants Database

Search the applicants mastering 
Java and SQL skills 

Fig. 1: An example of set containment search in job hiring

As for the set containment search over outsourced data, one
possible solution is to transform set records into some fix-
dimensional binary vectors. Then, the set containment search
problem can be converted into a scalar product based vector
search problem. For the clear description, we first give an
example to illustrate how to transform a set containment
search into a scalar product based vector search. Suppose that
X = {X1 = {e1, e2, e4}, X2 = {e1, e2}, X3 = {e2, e4}} is
a dataset with 3 set records and Q = {e2, e4} is a query set.
Then, X can be transformed into a collection of binary vectors
{x1 = (1, 1, 0, 1),x2 = (1, 1, 0, 0),x3 = (0, 1, 0, 1)}, where
the j-th element of xi is set to be 1 iff Xi contains ej for
j = 1, 2, 3, 4. Similarly, the query set Q = {e2, e4} can be
transformed into q = (0, 1, 0, 1). In this case, “Q ⊆ Xi” is
equivalent to “xi ◦ q = |q|”, where “ ◦ ” denotes the scalar
product computation and the value |q| = q◦q. Then, searching
the sets in X containing the query set Q is equivalent to search
the binary vectors in {x1,x2,x3} whose scalar product with
q is equal to |q|. In other words, the set containment search
problem can be transformed into the scalar product based
vector search problem.

The scalar product based vector search problem over en-
crypted outsourced data can be solved by function-hiding
scalar product encryption schemes [11]–[15]. This is because
the function-hiding scalar product encryption schemes can
reveal the scalar product between two vectors according to
their ciphertexts. With this nice property, the cloud server
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can process the scalar product based vector search prob-
lem over encrypted data and find out the vectors satisfying
the query vector. Nevertheless, these function-hiding scalar
product encryption schemes suffer from the search efficiency
issue, because they are either based on the time-consuming
bilinear pairing [11]–[14] or built upon a variant of Paillier
homomorphic encryption scheme [16]. For the scheme in
[15], it is an asymmetric scalar-product-preserving encryption
(ASPE) scheme and encrypts the vectors with a real domain
matrix. The matrix encryption is efficient as it is a symmetric
encryption and only involves matrix multiplication of real
domain. Thus, compared with the schemes in [11]–[14], the
ASPE scheme is the most efficient candidate to achieve scalar
product based vector search. However, the ASPE scheme [15]
still has a disadvantage in search efficiency. Specifically, in the
ASPE scheme [15], each vector is encrypted to be a ciphertext
and outsourced to the cloud. Given a query vector, the cloud
server needs to traverse all vectors in the database to find out
the query result. In other words, the computational complexity
of search in ASPE scheme is linear to the size of the database.
When the database is large, the search process is inefficient.
Meanwhile, the ASPE scheme also suffers from the security
issue, i.e., it cannot resist against the known-plaintext attacks
as shown in [17]. Therefore, it is still challenging to achieve
efficient and privacy-preserving set containment search.

Aiming at the above challenges, in this work, we propose an
efficient and privacy-preserving set containment search scheme
over encrypted data, which outperforms the existing schemes.
Specifically, the main contributions of this paper are three-fold:
• First, we deploy the idea of the ASPE scheme to design a

set containment/intersection encryption (SCIE-Enc) con-
struction, which can support the privacy-preserving set
containment query and set intersection query. Given the
ciphertexts of two sets Xi and Q, the set containment
query can determine whether Q is a subset of Xi, i.e.,

Q
?
⊆ Xi, while preserving the plaintext of Xi and

Q. Similarly, the set intersection query can determine
whether Xi has an intersection with Q, i.e., Xi ∩Q

?
= ∅,

without disclosing Xi and Q.
• Second, we propose an efficient and privacy-preserving

set containment search scheme by designing a radix tree
to represent the set records and employing our SCIE-Enc
construction to encrypt and search the radix tree. The
proposed scheme can support efficient set containment
search while preserving the privacy of set records in the
cloud, the query sets, as well as the query results.

• Finally, we analyze the security of our SCIE-Enc con-
struction and our proposed scheme. The result shows
that our SCIE-Enc construction is selectively simulation-
secure and it can resist against the known-plaintext at-
tacks. In addition, we conduct extensive experiments to
validate the efficiency of our scheme. The results indicate
that our proposed scheme is really privacy-preserving and
efficient in set containment search.

The remainder of this paper is organized as follows. We first
define our models and design goals in Section II, and describe
some preliminaries in Section III. In Section IV, we present

our scheme, followed by security analysis and performance
evaluation in Section V and Section VI, respectively. Finally,
we discuss some related work in Section VII and draw our
conclusion in Section VIII.

II. MODELS AND DESIGN GOALS

In this section, we formalize our system model, security
model, and identify our design goals.

0. First Part of Authorized Key

Return the set records
that contain the query set
𝑸, i.e., {𝐢𝐝𝒊|𝑸 ⊆ 𝑿𝒊}.

Data Owner Query Users

Cloud Server

ID Set Records

𝐢𝐝𝟏 𝑿𝟏 ⊆ {𝒆𝟏, 𝒆𝟐, ⋯ }

𝐢𝐝𝟐 𝑿𝟐 ⊆ {𝒆𝟏, 𝒆𝟐, ⋯ }

⋯⋯ ⋯⋯

𝐢𝐝𝒏 𝑿𝒏 ⊆ {𝒆𝟏, 𝒆𝟐, ⋯ }

Fig. 2: System model under consideration

A. System Model

In our system model, we consider a typical cloud-based set
containment search model, which consists of three kinds of
entities, namely a data owner, a cloud server and a collection of
authorized query users U = {U1, U2, · · · }, as shown in Fig. 2.
• Data Owner: The data owner has accumulated a collec-

tion of set records X = {X1, X2, · · · , Xn}. Each Xi ∈ X has
a unique identity idi and it is a subset of E , i.e., Xi ⊆ E , where
E = {e1, e2, · · · , ed} is the collection of all elements. For
maximizing the utility of X , the data owner is willing to offer
the set containment search service to the users. Meanwhile,
since the data owner is usually not powerful in computing
and storage, it tends to outsource the data X to a powerful
cloud and deploy the cloud server to manage the data. Since
the data X may contain some sensitive information and the
cloud server is not fully trustable, the data owner prefers to
encrypt X before outsourcing them to the cloud.
• Cloud Server: The cloud server is powerful in both

storage and computing capabilities, which can be regarded
as a link between the data owner and the query users in
our model. On the one hand, it is responsible for storing the
data X outsourced by the data owner. On the other hand, it
offers the set containment search service to the query users.
Specifically, upon receiving a query request from a query user,
the cloud server will search the outsourced data to find out the
set records satisfying the set containment search criterion, and
return them to the query user.
• Authorized Query Users U = {U1, U2, · · · }: In our system

model, there are a collection of authorized query users U =
{U1, U2, · · · } and each Ui ∈ U can enjoy the set containment
search service offered by the cloud server. Meanwhile, for
each query user, when he/she registers in the system, the data
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owner will randomly split an authorized key into two parts,
and securely distribute these two key parts to the query user
and the cloud, respectively, as shown in Fig. 2.

B. Security Model

In our security model, we consider the data owner is
trustable and will correctly outsource the encrypted set records
to the cloud server. For the cloud server, we assume it to
be honest-but-curious. Specifically, it will honestly store the
encrypted set records outsourced by the data owner and offer
the set containment service to the query users. However, it
may be curious about some private information such as the
plaintext of the set records stored in the cloud. In addition,
when processing a set containment search request, it may
attempt to obtain the plaintext of the query set Q and the query
result (the identities of set records that contain the query set
{idi|Q ⊆ Xi, Xi ∈ X}). For the authorized query users, they
are considered to be honest-but-curious. In other words, they
will honestly launch set containment search requests to the
cloud server, but they may be curious about the query sets and
query results of other query users. Besides, we assume there
is no collusion between the cloud server and the query users
in our model. Note that there may be other passive or active
attacks such as denial of service and data pollution attacks.
However, since this work focuses on privacy and efficiency in
set containment search over encrypted data, those attacks are
beyond the scope of this paper and will be discussed in our
future work.

C. Design Goals

In this paper, our goal is to design an efficient and privacy-
preserving set containment search scheme under above-
mentioned system model and security model. In particular,
the following two objectives should be satisfied.
• Privacy Preservation: The basic requirement of our

scheme is privacy preservation. That is, the encrypted set
records stored in the cloud should be kept secret from the
cloud server. The query sets and query results should also be
kept private from the cloud server and other query users.
• Efficiency: In order to achieve the above privacy re-

quirement, additional computational cost will be inevitably
incurred, i.e., processing the set containment search over the
encrypted data will undoubtedly increase the computational
cost compared with those doing over the plaintext sets. There-
fore, in the proposed scheme, we also aim to improve the
efficiency of set containment search.

III. PRELIMINARIES

In this section, we first formally define the set contain-
ment search problem and briefly review the radix tree and
an asymmetric scalar-product-preserving encryption (ASPE)
technique [15]. Then, we present a brief introduction of
our SCIE-Enc construction and its security. For the clear
description, we first list some used notations in Table I.

TABLE I: Summary of notations

Symbol Description
E = {e1, · · · , ed} The collection of all elements
X = {X1, · · · , Xn} The collection of all sets, Xi ⊆ E

xi = {xi1, xi2, · · · , xid} The binary representation of Xi

idi The identity of Xi

Q ⊆ E The query set
M and M−1 Matrix and its inverse matrix

CTXi
The ciphertext of Xi

TKCQ The set containment token of Q
TKISQ The set intersection token of Q

T The radix tree
Xnode The set in an internal tree node node
IDleafNode Sets’ identities in a leaf node leafNode
LC Leakage of the set containment query
LIS Leakage of the set intersection query

M1 and M2 The authorized key for the query users
ak The access key for the query users
ssk The session key for the query users

A. Definition of Set Containment Search

Let E = {e1, e2, · · · , ed} be the collection of all elements
and X = {X1, X2, · · · , Xn} denote n set records. Each Xi ∈
X has a unique identity idi and it is a subset of E , i.e., Xi ⊆ E .
Then, the set containment search can be defined as follows.

Definition 1 (Set Containment Search): Given a query set
Q ⊆ E and a collection of set records X = {X1, X2,
· · · , Xn}, the set containment search is to search all sets in
X and find out the sets that contain Q, i.e., {idi ∈ X |Q ⊆
Xi, Xi ∈ X}.

TABLE II: A collection of sets
ID Set
id1 X1 = {e5, e6, e7}
id2 X2 = {e1, e2, e4, e5}
id3 X3 = {e1}
id4 X4 = {e1, e2, e4, e6}
id5 X5 = {e5, e6, e7}

Example 1: Table II lists a collection of sets X =
{X1, X2, X3, X4, X5}. When the query set is Q = {e2, e4},
the query result will be {id2, id4}, because X2 and X4 contain
the query set Q, i.e., Q ⊆ X2 and Q ⊆ X4.

B. Radix Tree

As radix tree is a compact prefix tree [18], we first introduce
the concept of prefix tree. The prefix tree is a kind of
ordered tree that can be deployed to store a collection of sets
X = {X1, X2, · · · , Xn}, where Xi ⊆ E for i = 1, 2, · · · , n.
Due to the ordered nature of the prefix tree, the elements
in each set should also be orderly placed. Suppose that
E = {e1, e2, · · · , e7} is the collection of all elements. The
order of elements is {e1 → e2 → · · · → e7} and it is
called global order. Then, for a given set, its elements should
be placed in accordance with the global order. For example,
{e2, e4, e7} should be placed as {e2 → e4 → e7} rather than
{e4 → e2 → e7}. Thus, the collection of ordered sets can be
organized as a prefix tree. In the prefix tree, each internal node
stores an element in E . Each leaf node stores a collection of
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sets’ identities. Meanwhile, the sets whose identities store in a
given leaf node contain the same elements and these elements
are exactly the same as that storing in the path from the parent
of the leaf node to the root node. In addition, when two paths
share the same prefix elements, the paths corresponding to the
prefix can be merged.

Example 2: Fig. 3 presents an example of a prefix tree,
which is associated with the collection of sets in Table II.
In this figure, the identities of sets {X1, X2, X3, X4, X5}
are stored in the leaf nodes. For the leaf node storing id2,
the path from the parent of its leaf node to the root node
exactly contains the same elements as X2. Meanwhile, from
this figure, we can see that the paths of id2 and id4 share a
prefix {e1, e2, e4}, so the paths corresponding to the prefix are
merged.
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Fig. 3: The prefix tree for X = {X1, X2, X3, X4, X5}, where
X1 = X5 = {e5, e6, e7}, X2 = {e1, e2, e4, e5}, X3 = {e1},
X4 = {e1, e2, e4, e6}

The radix tree is a compact prefix tree. Specifically, in the
prefix tree, when an internal node only has one child, it can
be merged with its child. In this way, the prefix tree can be
compressed to be a radix tree.

Example 3: As shown in Fig. 3, the shaded nodes with
values e2, e5 and e6 only have one child, so they can be
merged with their children. As shown in Fig. 4, the node e2
can be merged with its child e4 and they form a new node
{e2, e4}. The nodes e5, e6 and e7 can be merged together to
be a new node {e5, e6, e7}. After the merging, the prefix tree
in Fig. 3 can be compressed to be a radix tree in Fig. 4.

r
o
o
t

𝑒5

r
o
o
t

𝑒6

ro
ot

𝑒2, 𝑒4

r
o
o
t

𝑒1

r
o
o
t

root

𝑒5, 𝑒6, 𝑒7r
o
o
t

id3

r
o
o
t

id2

r
o
o
t

id4
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Fig. 4: The radix tree for X = {X1, X2, X3, X4, X5}, where
each node with a single child has been merged with its child.

C. The ASPE Technique

The ASPE technique was proposed for the secure kNN
queries in [15]. In the ASPE scheme, the data records are

d-dimensional vectors and there are two types of vectors,
i.e, (i) the vectors in the database; and (ii) the query vector.
The main idea of the ASPE scheme is to encrypt these two
types of vectors in different ways so that the scalar product
between them can be preserved. Specifically, the ASPE tech-
nique ΠASPE = (AspeSetup,AspeEnc,AspeTokenGen) can be
defined as follows.
• AspeSetup(d): The setup algorithm takes the parameter
d as input, and outputs a random invertible matrix M ∈
Rd×d as the secret key, where R denotes the real domain.

• AspeEnc(M,x): The encryption algorithm takes the se-
cret key M and a d-dimensional vector x in the database
as input, and outputs a ciphertext CTx = xM.

• AspeTokenGen(M,q): The token generation algorithm
takes M and a d-dimensional query vector q as input
and outputs a query token TKq = rq(M−1)T , where
r ∈ R is a random positive real number and M−1 is the
inverse matrix of M.

The ASPE technique can preserve the scalar product re-
lationship between the query vector and the vectors in the
database. Let CTx1

and CTx2
respectively denote the cipher-

texts of vectors x1 and x2. Let TKq be the query token of
the query vector q. Then, the ASPE technique satisfies the
scalar-product-preserving property. That is,

CTx1
◦ TKq ≥ CTx2

◦ TKq ⇔ x1 ◦ q ≥ x2 ◦ q

where “◦” denotes the scalar product operation.
It is worth noting that the ASPE technique can be used

to achieve efficient scalar-product-based kNN queries over
encrypted database. However, the ASPE technique cannot
resist against the known-plaintext attacks as pointed out in
[17]. In the following Subsection IV-A, we will propose our
SCIE-Enc construction by introducing more random numbers
into the ASPE technique, so that our construction can resist
against the known-plaintext attacks.

D. A Brief Introduction of Our SCIE-Enc Construction

In this subsection, we briefly introduce our set contain-
ment/intersection encryption (SCIE-Enc) scheme, which can
support both the set containment query and set intersection
query. The set containment query is to determine whether
the query set is a subset of a set in the database, and
the set intersection query is to determine whether the query
set has an intersection with a set in the database. The
main idea of our SCIE-Enc construction is to encrypt the
set records in the database, and generate the set contain-
ment query tokens as well as set intersection query tokens
in different ways. In specific, our SCIE-Enc construction
ΠSCIE−Enc = (ScieSetup,ScieEnc,ScieTokenC,ScieQueryC,
ScieTokenIS,ScieQueryIS) can be defined as follows.
• ScieSetup(d): Given the parameter d, the setup algorithm

outputs a secret key sk.
• ScieEnc(sk,Xi): Given the secret key sk, a set Xi ⊆ E

can be encrypted to be a ciphertext CTXi .
• ScieTokenC(sk,Q): Given the secret key sk and a query

set Q, the set containment query token generation algo-
rithm outputs a query token TKCQ for Q.
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• ScieQueryC(CTXi
,TKCQ): Given CTXi

and TKCQ,
the set containment query algorithm returns 1 iff Q ⊆ Xi.
Otherwise, it returns 0.

• ScieTokenIS(sk,Q): Given the secret key sk and a query
set, the set intersection query token generation algorithm
generates a query token TKISQ for Q.

• ScieQueryIS(CTXi
,TKISQ): Given CTXi

and TKISQ,
the query algorithm returns 1 iff the intersection between
Xi and Q is not empty, i.e., Xi ∩ Q 6= ∅. Otherwise, it
returns 0.

Security: The semantic security of our SCIE-Enc con-
struction is proved in a real/ideal experiment setting, which
can subsume the traditional security definitions in the indis-
tinguishability setting as described in [19]. Before defining
the security, we first define the leakage in our SCIE-Enc
construction. In the set containment query phase, given the
ciphertext CTXi

and query token TKCQ, the leakage is the
query matching result LC = ScieQueryC(CTXi

,TKCQ). In
the set intersection query phase, given the ciphertext CTXi

and query token TKISQ, the leakage is the query matching
result LIS = ScieQueryIS(CTXi

,TKISQ). With the leakage
LC and LIS , the real and ideal experiments can be defined as
follows.

Real experiment: In the real experiment, the challenger
and a probabilistic polynomial-time adversary A interact as
follows.
• Setup: In the setup phase, A chooses a plaintext set
Xi ∈ X and sends it to the challenger. Meanwhile,
the challenger executes the ScieSetup(d) algorithm to
generate a secret key sk.

• Set containment query phase 1: A adaptively chooses
p1 query sets {Qj}p1

j=1 and sends them to the chal-
lenger, where p1 is a polynomial number. Then, the
challenger executes the set containment query token gen-
eration algorithm to generate p1 tokens, i.e., {TKCQj =
ScieTokenC(sk,Qj)}p1

j=1 and returns them to A.
• Set intersection query phase 1: A adaptively chooses
p′1 query sets {Qj}

p′1
j=1 and sends them to the chal-

lenger, where p′1 is a polynomial number. Then, the
challenger executes the set intersection query token gen-
eration algorithm to generate p′1 tokens, i.e., {TKISQj

=

ScieTokenIS(sk,Qj)}
p′1
j=1 and returns them to A.

• Challenge phase: The challenger executes the encryp-
tion algorithm and outputs a ciphertext CTXi

=
ScieEnc(sk,Xi) to A.

• Set containment query phase 2: A runs the set con-
tainment query phase 1 again to obtain p2 − p1 query
sets’ set containment query tokens, i.e., {TKCQj =
ScieTokenC(sk,Qj)}p2

j=p1+1, where p2 is a polynomial
number.

• Set intersection query phase 2: A runs the set inter-
section query phase 1 again to obtain p′2 − p′1 query
sets’ set intersection query tokens, i.e., {TKISQj

=

ScieTokenIS(sk,Qj)}
p′2
j=p′1+1, where p′2 is a polynomial

number.
In the real experiment, the view of A is ViewA,Real =

{Xi,CTXi
, {Qj ,TKCQj

}p2

j=1, {Qj ,TKISQj
}p
′
2

j=1}.

Ideal experiment: In the ideal experiment, a PPT adversary
A and a simulator Sim with leakage L = {LC ,LIS} interact
as follows.
• Setup: In the setup phase, A chooses a plaintext set Xi ∈
X and sends it to the simulator Sim. Then, Sim randomly
selects a ciphertext CTXi

.
• Set containment query phase 1: A adaptively chooses p1

query sets {Qj}p1

j=1 and sends them to Sim, where p1 is a
polynomial number. Then, Sim takes the leakage {LC =
ScieQueryC(CTXi

,TKCQj
)}p1

j=1 as input and generates
p1 tokens {TKCQj

}p1

j=1. Finally, it returns them to A.
• Set intersection query phase 1: A adaptively chooses p′1

query sets {Qj}
p′1
j=1 and sends them to Sim, where p′1 is a

polynomial number. Then, Sim takes the leakage {LIS =

ScieQueryIS(CTXi
,TKISQj

)}p
′
1

j=1 as input and generates

p′1 tokens {TKISQj
}p
′
1

j=1. Finally, it returns them to A.
• Challenge phase: Sim returns CTXi

to A.
• Set containment query phase 2: A runs the set con-

tainment query phase 1 again to obtain p2 − p1 query
sets’ set containment query tokens, i.e., {TKCQj =
ScieTokenC(sk,Qj)}p2

j=p1+1.
• Set intersection query phase 2: A runs the set inter-

section query phase 1 again to obtain p′2 − p′1 query
sets’ set intersection query tokens, i.e., {TKISQj

=

ScieTokenIS(sk,Qj)}
p′2
j=p′1+1.

In the ideal experiment, the view of A is ViewA,Ideal,L =

{Xi,CTXi
, {Qj ,TKCQj

}p2

j=1, {Qj ,TKISQj
}p
′
2

j=1}.
Definition 2 (Security of SCIE-Enc Construction [19]):

The SCIE-Enc construction is selectively simulation-secure
with respect to the leakage L = {LC ,LIS} iff for all PPT
adversaries A issuing polynomial numbers of set containment
queries and set intersection queries, there exists a simulator
Sim such that the advantage that A can distinguish the real
and ideal experiment is negligible.

IV. OUR PROPOSED SCHEME

In this section, we present our proposed set containment
search scheme. Before delving into the details of our proposed
scheme, we first introduce the detailed SCIE-Enc construction
and an efficient set containment search algorithm, which serve
as the building blocks of our proposed scheme.

A. Detailed SCIE-Enc Construction

In this subsection, we present the detailed SCIE-
Enc construction, which can support both set contain-
ment queries and set intersection queries. Let X =
{X1, X2, · · · , Xn} denote the collection of set records,
where Xi ⊆ E and E = {e1, e2, · · · , ed} is the col-
lection of all elements. Then, the SCIE-Enc construction
ΠSCIE−Enc = (ScieSetup,ScieEnc,ScieTokenC,ScieQueryC,
ScieTokenIS,ScieQueryIS) can be defined as follows.
• ScieSetup(d): Given the parameter d, i.e., the cardinality

of E , the setup algorithm outputs a random invertible
matrix M ∈ R(d+3)×(d+3) as the secret key, where R
denotes the real domain.
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• ScieEnc(M, Xi): Given the secret key M, a set Xi ⊆ E
can be encrypted as follows.
(a) Transform Xi to be a d-dimensional binary vector

xi = (xi1, xi2, · · · , xid), where xij = 1 if ej ∈ Xi

and xij = 0 otherwise.
(b) Extend xi to be a d + 3 dimensional vector x′i =

(r2 ∗xi, r2, r1, r
′
1), where r1, r′1, and r2 are random

real numbers satisfying r1 > 0, r′1 > 0, and r2 >
2 ∗max{r1, r′1}.

(c) Encrypt x′i as CTXi
= x′iM = (r2∗xi, r2, r1, r

′
1)M.

• ScieTokenC(M, Q): Given the secret key M, a set con-
tainment query token for the query set Q can be generated
as follows.
(a) Transform Q to be a d-dimensional vector q =

(q1, q2, · · · , qd), where qj = 1 if ej ∈ Q and qj = 0
otherwise.

(b) Extend q to be a d + 3 dimensional vector q′ =
(r4 ∗ q,−r4 ∗ |q|, r3, r′3), where r3, r′3, and r4 are
random real numbers satisfying r3 > 0, r′3 > 0, and
r4 > max{r3, r′3}.

(c) Generate the set containment query token for q′

as TKCQ = q′(M−1)T = (r4 ∗ q,−r4 ∗
|q|, r3, r′3)(M−1)T .

• ScieQueryC(CTXi
,TKCQ): Let CTXi

and TKCQ re-
spectively denote the ciphertext of Xi and the set con-
tainment query token of Q. If CTXi

◦ TKCQ > 0, the
query algorithm returns 1. Otherwise, it returns 0.

• ScieTokenIS(M, Q): Given the secret key M, a set inter-
section token for Q can be generated as follows.
(a) Transform Q to be a d-dimensional vector q =

(q1, q2, · · · , qd), where qj = 1 if ej ∈ Q and qj = 0
otherwise.

(b) Extend q to be a d + 3 dimensional vector q′ =
(r6∗q, 0,−r5,−r′5), where r5, r′5, and r6 are random
real numbers satisfying r5 > 0, r′5 > 0, and r6 >
max{r5, r′5} > 0.

(c) Generate the set intersection query token
for Q as TKISQ = q′(M−1)T =
(r6 ∗ q, 0,−r5,−r′5)(M−1)T .

• ScieQueryIS(CTXi
,TKISQ): Let CTXi

and TKISQ re-
spectively denote the ciphertext of Xi and the set inter-
section token of Q. If CTXi

◦ TKISQ > 0, the query
algorithm returns 1. Otherwise, it returns 0.

Correctness: The SCIE-Enc construction is correct iff both
the set containment query and set intersection query can return
the correct query result.
• Set containment query: According to the transformation

method from sets to binary vectors, it is easy to deduce that
if Q is a subset of Xi, we have xi ◦q = |q|. That is, xi ◦q−
|q| = 0. Then, when xi and q are respectively encrypted into
a ciphertext CTXi

and a token TKCQ. The set containment
query is correct iff

CTXi
◦ TKCQ > 0⇔ xi ◦ q− |q| = 0. (1)

Theorem 1: Eq. (1) holds.
Proof. We respectively prove the necessity and sufficiency

of Eq. (1).

• Necessity: CTXi
◦ TKCQ > 0⇒ xi ◦ q− |q| = 0.

First, we have

CTXi ◦ TKCQ = x′i ◦ q′

= (r2 ∗ xi, r2, r1, r
′
1) ◦ (r4 ∗ q,−r4 ∗ |q|, r3, r′3)

= r2 ∗ r4 ∗ (xi ◦ q− |q|) + r1 ∗ r3 + r′1 ∗ r′3.

Since r2 > 2 ∗ max{r1, r′1} > 0, r4 > max{r3, r′3} > 0.
Then, we can deduce that

r2 ∗ r4 > 2 ∗max{r1, r′1} ∗max{r3, r′3}
> r1 ∗ r3 + r′1 ∗ r′3 > 0.

Since r1 > 0, r′1 > 0, r3 > 0, r′3 > 0, we have r1 ∗ r3 + r′1 ∗
r′3 > 0. That is, r2 ∗ r4 > r1 ∗ r3 + r′1 ∗ r′3 > 0. Thus, we have

CTXi ◦ TKCQ = r2 ∗ r4 ∗ (xi ◦ q− |q|) + r1 ∗ r3 + r′1 ∗ r′3
< r2 ∗ r4 ∗ (xi ◦ q− |q|) + r2 ∗ r4.

If CTXi ◦ TKCQ > 0, we can deduce that

r2 ∗ r4 ∗ (xi ◦ q− |q|) + r2 ∗ r4 > 0

⇔ r2 ∗ r4 ∗ (xi ◦ q− |q|+ 1) > 0

⇔ xi ◦ q− |q|+ 1 > 0 (∵ r2 ∗ r4 > 0)

⇔ xi ◦ q− |q| > −1.

Since xi and q are binary vectors, xi ◦q and |q| are integers.
Then, xi ◦q−|q| is also an integer. Thus, we can deduce that

xi ◦ q− |q| > −1⇔ xi ◦ q− |q| ≥ 0. (2)

Meanwhile, since xi ◦ q denotes the size of the intersection
between xi and q, and |q| denotes the size of q, we have

xi ◦ q ≤ |q| ⇔ xi ◦ q− |q| ≤ 0. (3)

By combining Eq. (2) and Eq. (3), we can deduce that

xi ◦ q− |q| = 0.

Hence, the necessary holds, i.e., CTXi
◦ TKCQ > 0 ⇒ xi ◦

q− |q| = 0.
• Sufficiency: xi ◦ q− |q| = 0⇒ CTXi

◦ TKCQ > 0.
First, we have

CTXi
◦ TKCQ

= r2 ∗ r4 ∗ (xi ◦ q− |q|) + r1 ∗ r3 + r′1 ∗ r′3.

If xi ◦ q− |q| = 0, we can deduce that

CTXi
◦ TKCQ = r1 ∗ r3 + r′1 ∗ r′3.

Since r1 > 0, r′1 > 0, r3 > 0, and r′3 > 0, we can deduce that

CTXi
◦ TKCQ = r1 ∗ r3 + r′1 ∗ r′3 > 0

⇔ CTXi
◦ TKCQ > 0.

Hence, the sufficiency holds, i.e., xi ◦ q− |q| = 0⇒ CTXi
◦

TKCQ > 0.
Therefore, Eq. (1) holds, and the set containment query is

correct. �
• Set intersection query: Similar to the set containment

query, it is easy to deduce that if Q ∩ Xi is not an empty
set, we have xi ◦q > 0. Then, when xi and q are respectively
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encrypted into a ciphertext CTXi
and a token TKISQ. The

set intersection query is correct iff

CTXi
◦ TKISQ > 0⇔ xi ◦ q > 0. (4)

Theorem 2: Eq. (4) holds.
Proof. We respectively prove the necessity and sufficiency

of Eq. (4).
• Necessity: CTXi ◦ TKISQ > 0⇒ xi ◦ q > 0.
First, we have

CTXi ◦ TKISQ = r2 ∗ r6 ∗ (xi ◦ q)− r1 ∗ r5 − r′1 ∗ r′5.

Since r1 > 0, r′1 > 0, r5 > 0, and r′5 > 0, we can deduce that

CTXi
◦ TKISQ = r2 ∗ r6 ∗ (xi ◦ q)− r1 ∗ r5 − r′1 ∗ r′5

< r2 ∗ r6 ∗ (xi ◦ q).

If CTXi ◦ TKISQ > 0, we can deduce that

r2 ∗ r6 ∗ (xi ◦ q) > 0. (5)

Meanwhile, since r2 > 0 and r6 > 0, we have

xi ◦ q > 0.

Hence, the necessary of Eq. (4) holds, i.e., CTXi
◦TKISQ >

0⇒ xi ◦ q > 0.
• Sufficiency: xi ◦ q > 0⇒ CTXi

◦ TKISQ > 0.
First, since xi and q are binary vectors, we can deduce that

xi ◦ q are non-negative integers. If xi ◦ q > 0, we have

xi ◦ q ≥ 1. (6)

Since r2 > 2 ∗max{r1, r′1} > 0 and r6 > max{r5, r′5} > 0,
we have

r2 ∗ r6 > 2 ∗max{r1, r′1} ∗max{r5, r′5}
> r1 ∗ r5 + r′1 ∗ r′5 > 0. (7)

By combining Eq (6) and Eq. (7), we can deduce that

CTXi ◦ TKISQ = r2 ∗ r6 ∗ (xi ◦ q)− r1 ∗ r5 − r′1 ∗ r′5
≥ r2 ∗ r6 − r1 ∗ r5 − r′1 ∗ r′5 > 0.

That is, CTXi
◦TKISQ > 0. Hence, the sufficiency of Eq. (4)

holds, i.e., xi ◦ q > 0⇒ CTXi
◦ TKISQ > 0.

Therefore, Eq. (4) holds, and the set intersection query is
correct. �

Note that, compared with the ASPE scheme, our SCIE-
Enc construction introduces three random numbers for each
ciphertext CTXi

, each set containment query token TKCQ,
and each set intersection query token TKISQ. Specifically,
CTXi , TKCQ and TKISQ respectively introduce the random
numbers {r1, r′1, r2}, {r3, r′3, r4}, and {r5, r′5, r6}. In Sub-
section V-A, we will show that these random numbers can
guarantee the security of our SCIE-Enc construction.

B. Efficient Set Containment Search Algorithm

The set containment search is the most critical part of our
proposed scheme. In this subsection, we will show how to
efficiently determine whether a set X contains a query set Q or
not. Suppose that X = {el1 , · · · , el|X|}, Q = {et1 , · · · , et|Q|},
and the order of the elements in X and Q follows the global
order of elements in E . Then, the set containment relationship
between X and Q can be determined as follows, which is also
shown in Algorithm 1.

• First, compare the first element of X with that of Q, we
will have three cases,
(a) If X’s first element is equal to Q’s first element,

continue to compare their second elements.
(b) If the global order of X’s first element is larger than

that of Q’s first element, X cannot contain Q’s first
element. The algorithm returns 0.

(c) If the global order of X’s first element is smaller
than that of Q’s first element, continue to compare
X’s second element with Q’s first element.

• Second, continue to compare other elements of X and Q
in the same way until X contains all elements of Q.

Algorithm 1 Determine whether Q ⊆ X or not
Input: A set X = {el1 , · · · , el|X|} and the query set Q =
{et1 , · · · , et|Q|}

Output: The matching result between Xi and Q
1: j = 1;
2: for i = 1 to |X| do

// Case (a)
3: if eli == etj then
4: i = i+ 1;
5: j = j + 1;

// Case (b)
6: else if li > tj then // X cannot contain etj , so Q * X
7: return 0; // Q is not a subset of X

// Case (c)
8: else
9: i = i+ 1;

10: if j > |Q| then
11: return 1; // Q is a subset of X
12: return 0;

The Algorithm 1 determines whether Q is a subset of X by
comparing elements of X and Q. Since both X and Q follow
the global order, the algorithm can decide that Q is not a subset
of Xi when li > tj . Similarly, it can decide that Q is a subset
of Xi when j > |Q|. These early termination conditions help
to improve the set containment search efficiency. However,
since Algorithm 1 is based on the elements’ comparison
between X and Q, it is challenging to apply the privacy
techniques to protect the privacy of X and Q. In our scheme,
for preserving the privacy of both X and Q, we propose a new
set containment search algorithm and its privacy can be easily
preserved by our SCIE-Enc construction. The new algorithm
is to transform X and Q into multiple sets and process the set
containment search over these sets.

• First, transform X = {el1 , · · · , el|X|} to be |X| sets as

X ′i = {el1 , · · · , eli}, 1 ≤ i ≤ |X|. (8)
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• Second, transform Q = {et1 , · · · , et|Q|} to be 2|Q| sets
as{

Q′2j−1 = {et1 , et2 , · · · , etj} 1 ≤ j ≤ |Q|
Q′2j = {etj+1, etj+2, · · · , ed} 1 ≤ j ≤ |Q|.

(9)

• Third, transform the conditions eli = etj and li > tj in
Algorithm 1 to be{

eli = etj ⇒ Q′2j−1 ⊆ X ′i
li > tj ⇒ X ′i ∩Q′2j 6= ∅.

For the transformation of eli = etj , the correctness is
obvious. For the transformation of li > tj , since Q′2j =
{etj+1, · · · , ed1

} contains all of the elements whose
global order is larger than tj . Then, when X ′i ∩Q′2j 6= ∅,
we can learn that li > tj . Thus, the transformation is
correct.

After the above transformation, Algorithm 1 can be trans-
formed to be Algorithm 2.

Algorithm 2 Determine whether Q ⊆ X or not

Input: {X ′i}
|X|
i=1, {Q′2j−1, Q

′
2j}
|Q|
j=1

Output: The matching result between X and Q
1: j = 1;
2: for i = 1 to |X| do

// Case (a)
3: if Q′2j−1 ⊆ X ′i then
4: i = i+ 1;
5: j = j + 1;

// Case (b)
6: else if X ′i ∩ Q′2j 6= ∅ then // X cannot contain etj , so

Q * X
7: return 0; // Q is not a subset of X

// Case (c)
8: else
9: i = i+ 1;

10: if j > |Q| then
11: return 1; // Q is a subset of X
12: return 0;

Example 4: Suppose that X = {e1, e2, e5, e6} and Q =
{e1, e3, e5}, where the collection of elements is assumed to be
E = {e1, e2, · · · , e6}. Then, we can transform X to be 4 sets,
i.e., X ′1 = {e1}, X ′2 = {e1, e2}, X ′3 = {e1, e2, e5} and X ′4 =
{e1, e2, e5, e6}. Meanwhile, we transform Q to be 6 (i.e., 2 ∗
|Q|) sets. That is, Q′1 = {e1}, Q′2 = {e2, e3, e4, e5, e6}, Q′3 =
{e1, e3}, Q′4 = {e4, e5, e6}, Q′5 = {e1, e3, e5}, Q′6 = {e6}.
Then, following the Algorithm 1, we can determine the set
containment relationship between X and Q. Meanwhile, we
list the equivalent conditions of Algorithm 1 and Algorithm 2
in Eq. (10).

(l1 = 1; t1 = 1) el1 = et1 ⇔ Q′1 ⊆ X ′1
(l2 = 2; t2 = 3) l2 < t2 ⇔ Q′4 ∩X ′2 = ∅
(l3 = 5; t2 = 3) l3 > t2 ⇔ Q′4 ∩X ′3 6= ∅

(10)

C. Description of Our Proposed Scheme

In this subsection, we present our set containment search
scheme, which consists of three phases, i.e., system initializa-
tion, local data outsourcing and set containment search.

1) System Initialization: The data owner is responsible for
initializing the system. Suppose that X = {X1, X2, · · · , Xn}
is the dataset collected by the data owner, where Xi ⊆
E = {e1, e2, · · · , ed}. The data owner generates an invertible
matrix M ∈ R(d+3)×(d+3) and the corresponding inverse
matrix M−1 ∈ R(d+3)×(d+3) as the secret keys. At the
same time, for each user Ui, the data owner generates two
random matrices, i.e., M1,M2 ∈ R(d+3)×(d+3), such that
(M−11 )TM2 = (M−1)T . In addition, the data owner random-
ly generates an access key ak for the AES algorithm. Then, the
data owner authorizes Ui by respectively distributing (M1, ak)
and M2 to Ui and the cloud server. Note that different query
users are authorized by different matrices.

2) Local Data Outsourcing: The data owner outsources the
collection of sets X = {X1, X2, · · · , Xn} to the cloud server
as the following steps.

Step 1: Build a radix tree T to represent the sets in X .
Step 2: Extend the radix tree T . According to the transfor-

mation method of X in Algorithm 2, in the extended tree, we
replace the elements of each internal node with all elements
from the current node to the root node. In this way, the radix
tree in Fig. 4 can be extended to be that in Fig. 5.

root𝑒1, 𝑒2, 𝑒4, 𝑒5

root𝑒1, 𝑒2, 𝑒4
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t

id3

r
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o
t

id2
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o
t

id4

rootid1, id5

Fig. 5: Extended radix tree for X = {X1, X2, X3, X4, X5}

Step 3: Encrypt the extended radix tree T . In the extended
tree T , each internal node is associated with a set, denoted by
Xnode . Then, the data owner encrypts this node by encrypting
Xnode as CTXnode

= ScieEnc(M, Xnode). For each leaf node,
the data owner uses AES algorithm to encrypt the identities of
the sets storing in it. Suppose that IDleafNode is the collection
of the sets’ identities storing in the leaf node. Then, the data
owner encrypts the leaf node as AESak(IDleafNode).

Step 4: Outsource the encrypted tree T to the cloud server.
Step 5: On receiving the outsourced tree T , the cloud server

stores it in the cloud.
3) Set Containment Search: Given a query set Q, the au-

thorized query user Ui can enjoy the set containment search
service to obtain the sets containing Q as the following steps.

Step 1: Suppose that Q = {et1 , et2 , · · · , et|Q|} is the query
set. The query user first constructs 2|Q| sets as Eq. (9), denoted
by Q = {Q2j−1, Q2j}|Q|j=1.

Step 2: The query user Ui generates the query token. In
specific, for each Q2j−1 ∈ Q, it uses its secret matrix M1

to generate a set containment query token TKCQ2j−1
=

ScieTokenC(M1, Q2j−1). For each Q2j ∈ Q, it uses M1

to generate a set intersection query token TKISQ2j =
ScieTokenIS(M1, Q2j), where 1 ≤ j ≤ |Q|. Then, Ui random-
ly chooses a session key ssk. Finally, the query user launches
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a query request and sends ssk together with the collection of
tokens {TKCQ2j−1 ,TKISQ2j}

|Q|
j=1 to the cloud server, where

the privacy of ssk can be preserved by a public key encryption
scheme, e.g., RSA.

Step 3: On receiving the query request, the cloud server
first validates whether the query user Ui is authorized or not.
If not, reject the current search request. Otherwise, it runs the
following steps to obtain the search result.

Step 4: Since the query tokens {TKCQ2j−1 , TKISQ2j}
|Q|
j=1

are encrypted by the matrix M1. In order to perform the
set containment search, the cloud server first uses Ui’s secret
matrix M2 to update each query token as

TKCQ2j−1
= TKCQ2j−1

M2

= q′2j−1(M−11 )TM2

= q′2j−1(M−1)T

TKISQ2j
= TKCQ2j

M2

= q′2j(M
−1
1 )TM2

= q′2j(M
−1)T

After the update, the query tokens {TKCQ2j−1 , TKISQ2j}
|Q|
j=1

become the tokens encrypted by the matrix M. With the
updated query tokens {TKCQ2j−1

, TKISQ2j
}|Q|j=1, the cloud

server performs a depth-first set containment search over
the encrypted extended radix tree T to obtain the query
result R. The search algorithm is shown in Algorithm 3.
Its main idea is to regard each leaf node as a set and
the path from the leaf node to the root node stores its
transformation sets. Then, the Algorithm 2 can be used to
determine whether the set associated with the leaf node
contains the query set or not. Since the cloud server only
has the ciphertexts and tokens, the condition Q′2j−1 ⊆ Xnode

of Algorithm 2 can be replaced by set containment query
ScieQueryC(CTXnode

,TKCQ2j−1
) = 1. Meanwhile, the con-

dition Xnode ∩Q′2j 6= ∅ of Algorithm 2 can be replaced by a
set intersection query ScieQueryIS(CTXnode

,TKISQ2j
) = 1.

In Algorithm 3, we use a stack S to store the nodes that
should be searched later. For each node being searched, the
search algorithm first matches the node with Q’s query tokens,
i.e., line 6 and line 7. The reason why we need to run the set
containment query algorithm in line 6 multiple times is that
each radix tree node may contain more than one element. In
this case, the node may match multiple query tokens. After
that, if the current node has matched all elements of Q, all its
leaf nodes contain the query set Q and they will be added into
the query result R. If ScieQueryIS(CTXnode

,TKISQ2j
) = 1,

all its child nodes cannot contain Q and they will be pruned.
Otherwise, add all its child nodes into the stack S and they
will be searched later.

Step 5: The cloud server uses the session key ssk to
encrypt the query result R = {AESak(IDleafNode)} as
R′ = {AESssk(AESak(IDleafNode))}. Then, the cloud server
returns R′ to the query user Ui.

Step 6: On receiving the query result R′, Ui can use the
session key ssk and access key ak to recover each IDleafNode,
where each idj ∈ IDleafNode contains the query set Q.

Algorithm 3 The set containment search
Input:

Query tokens {TKCQ2j−1 ,TKISQ2j}
|Q|
i=1

The encrypted radix tree T
Output: The query result R.

1: j = 1;
2: Stack S = ∅;
3: S.push(T.root, j);
4: while S ! = ∅ do
5: (node, j) = S.pop();
6: while ScieQueryC(CTXnode ,TKCQ2j−1) == 1 do
7: j = j + 1;
8: if j > |Q| then
9: add all node’s leaf nodes into the query result R;

10: else if ScieQueryIS(CTXnode ,TKISQ2j ) == 1 then
11: all node’s child nodes can be pruned;
12: else
13: for each node’s child node child do
14: S.push(child , j);
15: return R;

D. Optimization of Query Token Generation Method

In our proposed scheme, when the query user launches a set
containment search request, he/she first transforms the query
set Q to be 2|Q| setsQ = {Q2j−1, Q2j}|Q|j=1 and encrypts these
sets to be query tokens {TKCQ2j−1 ,TKISQ2j}

|Q|
j=1. However,

this transformation method has some limitations. On the one
hand, when the size of Q is large, the computational cost of
query tokens generation and communication overhead of query
request is large. On the other hand, from the query tokens,
the cloud server can learn about the size of Q. In order to
reduce the computational cost and communication overhead
of the query user and preserve the privacy of the query set,
the query user does not have to generate and send all of the
query tokens Q = {Q2j−1, Q2j}|Q|j=1 to the cloud server. In
other words, he/she can randomly select several pairs of query
tokens from {Q2j−1, Q2j}|Q|−1j=1 and send them together with
{Q2|Q|−1, Q2|Q|} to the cloud. It is easy to validate that the
set containment search is still correct even if the query request
only contains part of the query tokens. Since the optimized
query token generation method is more secure, our scheme
adopts this method to generate the query tokens by default.

V. SECURITY ANALYSIS

In this section, we analyze the security of our proposed set
containment search scheme. Since the SCIE-Enc construction
is the building block of our proposed scheme, we first analyze
the security of our SCIE-Enc construction.

A. Security Analysis of Our SCIE-Enc Construction

In this subsection, we show that our scheme is selectively
simulation-secure in the real and ideal experiments.

Theorem 3: Our SCIE-Enc construction is selectively
simulation-secure with leakage L = {LC ,LIS}. LC =
ScieQueryC(CTXi ,TKCQ) is the set containment leakage
and LIS = ScieQueryIS(CTXi

,TKISQ) is the set intersection
leakage, where CTXi

, TKCQ and TKISQ are respectively the
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ciphertext of Xi, the set containment query token, and the set
intersection query token of Q.

Proof: First, we construct a simulator Sim for the ideal
experiment as follows.
• Setup: In the setup phase, A chooses a plaintext set Xi ∈

X and sends it to the simulator Sim. Then, Sim randomly
selects a (d+ 3)-dimensional vector as the ciphertext CTXi

.
• Set containment query phase 1: A adaptively chooses p1

query sets {Qj}p1

j=1 and sends them to Sim. Then, for each
Qj , Sim takes LC = ScieQueryC(CTXi ,TKCQj ) as input.

- If LC = 1, Sim randomly generates a (d+3)-dimensional
vector TKCQj

such that CTXi
◦TKCQj

> 0 as the query
token.

- If LC = 0, Sim randomly generates a (d+3)-dimensional
vector TKCQj

such that CTXi
◦TKCQj

< 0 as the query
token.

Then, Sim returns {TKCQj}
p1

j=1 to A.
• Set intersection query phase 1: A adaptively chooses p′1

query sets {Qj}
p′1
j=1 and sends them to Sim. Then, for each Qj ,

Sim takes the leakage LIS = ScieQueryIS(CTXi ,TKISQj ) as
input.

- If LIS = 1, Sim randomly generates a (d + 3)-
dimensional vector TKISQj such that CTXi ◦TKISQj >
0 as the query token.

- If LIS = 0, Sim randomly generates a (d + 3)-
dimensional vector TKISQj

such that CTXi
◦TKISQj

<
0 as the query token.

Then, Sim returns {TKISQj}
p′1
j=1 to A.

• Challenge phase: Sim returns CTXi to A.
• Set containment query phase 2: A runs the set con-

tainment query phase 1 again to obtain p2 − p1 query
sets’ set containment query tokens, i.e., {TKCQj

=
ScieTokenC(sk,Qj)}p2

j=p1+1.
• Set intersection query phase 2: A runs the set in-

tersection query phase 1 again to obtain p′2 − p′1 query
sets’ set intersection query tokens, i.e., {TKISQj =

ScieTokenIS(sk,Qj)}
p′2
j=p′1+1.

In the ideal experiment, the view of A is ViewA,Ideal,L =

{Xi,CTXi
, {Qj ,TKCQj

}p2

j=1, {Qj ,TKISQj
}p
′
2

j=1} and al-
l of them are random (d + 3)-dimensional vectors. In
the real experiment, the view of A is ViewA,Real =

{Xi,CTXi , {Qj ,TKCQj}
p2

j=1, {Qj ,TKISQj}
p′2
j=1}, where

CTXi
= (ri,2 ∗ xi, ri,2, ri,1, r

′
i,1)M

TKCQj
= (rj,4 ∗ qj ,−rj,4 ∗ |qj |, rj,3, r′j,3)(M−1)T

TKISQj
= (rj,6 ∗ qj , 0,−rj,5,−r′j,5)(M−1)T ,

(11)

and {ri,1, r′i,1, ri,2, rj,3, r′j,3, rj,4, rj,5, r′j,5, rj,6} are positive
random numbers.

In order to distinguish the real experiment and ideal experi-
ment, the adversary A will attempt to distinguish ViewA,Real

and ViewA,Ideal,L. Since ViewA,Ideal,L only contains random
vectors,A will attempt to distinguish ViewA,Real from random
vectors. In Theorem 4, we prove that ViewA,Real is indistin-
guishable from random vectors.

Theorem 4: ViewA,Real is indistinguishable from random
vectors, where ViewA,Real = {Xi,CTXi

, {Qj ,TKCQj
}p2

j=1,

{Qj ,TKISQj
}p
′
2

j=1}.

Proof: We prove the correctness of Theorem 4 by contra-
diction. Suppose that ViewA,Real can be distinguished from
random vectors. Then, A must be able to construct an equation
system through vectors in ViewA,Real such that this equation
system has a unique solution. Without loss of generality, we
assume that there are n equations in this equation system.
Then, A should try his/her best to minimize the number of
unknown variables in each equation. It is easy to verify the
following equation system has smaller or equal to number of
unknown variables compared with other equation systems.

CTxi ◦ TKCq1 = ri,2 ∗ r1,4 ∗ (xi ◦ q1 − |q1|)
+ri,1 ∗ r1,3 + r′i,1 ∗ r′1,3

CTxi ◦ TKCq2 = ri,2 ∗ r2,4 ∗ (xi ◦ q2 − |q2|)
+ri,1 ∗ r2,3 + r′i,1 ∗ r′2,3
· · ·

CTxi ◦ TKCqn = ri,2 ∗ rn,4 ∗ (xi ◦ qn − |qn|)
+ri,1 ∗ rn,3 + r′i,1 ∗ r′n,3.

(12)

This is because each equation in Eq. (12) has removed un-
known variables as much as possible, i.e., it removes unknown
matrix M for j = 1, 2, · · · , p2. If the adversary replaces an
equation in Eq. (12) with any other equation, the unknown
variables of the equation system will be larger or equal to
number of unknown variables in Eq. (12).

In Eq. (12), the values {xi ◦ qj − |qj |}nj=1 can
be computed with {Xi, {Qj}nj=1}. Then, Eq. (12) to-
tally has n equations with 3n + 3 unknown variables
{ri,1, r′i,1, ri,2, {rj,3, r′j,3, rj,4}nj=1}. Since the number of un-
known variables is larger than the number of equations,
Eq. (12) has an infinite number of solutions, which contra-
dicts to the assumption. Thus, the assumption is wrong, and
Theorem 4 is correct. That is, ViewA,Real is indistinguishable
from random vectors.

Thus, A cannot distinguish ViewA,Real from random vec-
tors. Hence, A cannot distinguish the real and ideal exper-
iments. Therefore, our SCIE-Enc construction is selectively
simulation-secure with leakage L.

B. Security of Our Proposed Scheme

In this subsection, we analyze the security of our proposed
scheme, in which the query tokens are generated by the
optimized query token generation method. As described in
our security model, our security analysis mainly focuses on
the privacy-preserving properties, so we will show that (i) the
sets stored in the cloud are privacy-preserving; (ii) the query
sets are privacy-preserving; (iii) the query results are privacy-
preserving.
• The sets stored in the cloud are privacy-preserving.

As described in Subsection IV-C, the sets are stored in an
encrypted radix tree and outsourced to the cloud server. Since
the cloud server is considered to be honest-but-curious, it
may be curious about the plaintexts of sets. In this case,
it may attempt to deduce some sets information from the
encrypted radix tree. In the radix tree, each internal node
is associated with a set, which is encrypted by the SCIE-
Enc construction. Then, the adaptive security of our SCIE-Enc
construction guarantees that the cloud server has no idea on
the plaintext of set in the internal node. For the leaf node, it
stores the ciphertext of sets’ identities. The security of AES

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 03:40:04 UTC from IEEE Xplore.  Restrictions apply. 



1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3065240, IEEE
Transactions on Services Computing

11

algorithm guarantees that the cloud server has no idea on the
plaintext sets’ identities. Thus, the cloud server cannot obtain
any information about the plaintext of sets from the encrypted
radix tree.

At the same time, the cloud server may try to obtain some
sets information from the radix tree structure. Specifically, in
order to obtain the set information, the cloud server may try to
analyze the number of elements in each tree path by counting
the number of internal nodes of each tree path. However, in
the radix tree, the internal node with one child node has been
merged with its corresponding child node, so each internal
node in the radix tree may contain more than one element. In
other words, multiple set elements are possibly encrypted to
be one internal node. In this case, the cloud server cannot
obtain any information about the set elements information
from the tree path. Therefore, the cloud server has no idea
on the plaintexts of sets’ identities storing in the cloud.
• The query sets are privacy-preserving. When the query

user launches a set containment search, the plaintext of the
query set should be kept secret from the cloud server and
other query users.

For the cloud server, during a query, it can receive several
pairs of query tokens {TKCQ2j−1

,TKISQ2j
}. Since the query

tokens have been encrypted with our SCIE-Enc construction,
the adaptive security of SCIE-Enc construction can guarantee
that the cloud server cannot obtain any information about
the plaintext of Q. At the same time, in order to preserve
the size of Q, the query user only sends several pairs of
query tokens rather than {TKCQ2j−1

,TKISQ2j
}|Q|j=1. Thus,

the size of the query set is privacy-preserving. After receiv-
ing the query tokens, the cloud server needs to search the
encrypted radix tree to find out the query result. The search
process will leak which internal nodes satisfy the query to-
kens {TKCQ2j−1

,TKISQ2j
}. When an internal node satisfies

TKCQ2j−1
, it means that this node contains all of elements in

Q2j−1, i.e., {et1 , et2 , · · · , etj}. Meanwhile, when an internal
node satisfies TKISQ2j , it means that this node contains at
least one element whose global order is larger than j. This
is because, it has intersection with Q2j = {etj+1, · · · , ed}.
However, since both the internal node and the query sets may
contain multiple elements, it is hard to guess the plaintext
of the query set from the set containment and intersection
relationship between the internal nodes and the query tokens.
Thus, the cloud server has no idea on query sets’ plaintexts.

For other query users, since the query tokens are generated
with the users’ secret matrix M1. Thus, the security of our
SCIE-Enc construction guarantees that other query users also
have no idea on the plaintext of the query sets. Therefore, the
query sets are privacy-preserving.
• The query results are privacy-preserving. In our scheme,

the query result is R′ = {AESssk(AESak(IDleafNode))},
which are encrypted twice by the AES algorithm. For the
cloud server, it only has access to ssk and has no idea on
ak. For other query users, they have ak but they do not have
access to the ssk. At the same time, the AES algorithm is
secure, so none of the cloud server and other query users can
learn about the plaintext of the query result. Thus, the query
results are privacy-preserving.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our scheme
with respect to the computational cost of local data out-
sourcing, set containment search processing, query tokens
generation and query result recovery. Since the function-hiding
scalar product encryption schemes can also be deployed to
achieve set containment search and the ASPE scheme is the
most efficient one, we intend to compare our scheme with
the ASPE scheme. However, the ASPE scheme cannot resist
against the known-plaintext attacks. We compare our scheme
with a modified ASPE scheme, where the modified ASPE
scheme can resist against the known-plaintext attacks and does
not incur too much additional computational cost compared
with the original ASPE scheme.

In the modified ASPE scheme, we apply the idea of our
SCIE-Enc construction to protect it from known-plaintext
attacks. Specifically, a set Xi’s binary vector xi is encrypted as
CTXi

= x′iM = (r2 ∗ xi, r2, r1, r
′
1)M. Meanwhile, a set Q’s

query token is generated by the set token generation algorithm,
i.e., TKCQ = q′(M−1)T = (r4∗q,−r4∗|q|, r3, r′3)(M−1)T .
When performing a set containment query, the cloud sever
uses the query token TKCQ to traverse all encrypted set
records to obtain the query result. Based on our security
analysis, the modified ASPE scheme is secure against know-
plaintext attacks. Meanwhile, the modified ASPE scheme does
not increase too much computational cost compared with
the original ASPE scheme, because it only increases two
additional dimensions.

In our experiments, both our scheme and the modified ASPE
scheme were implemented by Java and the experiments were
conducted on a machine with an Intel(R) Core(TM) i7-3770
CPU @3.40GHz, 16GB RAM and Windows 10 operating
system. The access key and session keys for the AES algorithm
are set to be 128 bits, i.e., |ak| = |ssk| = 128. Each
experiment was conducted multiple times and the average
runtime is reported. At the same time, the evaluated datasets
are two real datasets, i.e., Jester [20] and MovieLen [21]. The
Jeter dataset is a joke rating dataset and it contains the rating
information of 100 jokes from 24,983 users. Each rating value
ranges from -10.00 to 10.00. For each user, we transform
his/his rating record to be a set, which contains the jokes that
his/her rating value is larger than 7. After that, we obtain a
dataset with 11,986 sets. For the MovieLen dataset, it contains
the rating information of 3,952 movies from 6,040 users. Thus,
it contains 6,040 sets in total. In order to better compare
our proposed scheme with the modified ASPE scheme, we
extend both the Jeter dataset and MovieLens dataset to contain
30,000 sets by generating some new sets for them. Note
that the new generated sets are very similar to those of the
original datasets, i.e., they follow the same distribution with
the original datasets.

A. Computational Cost of Local Data Outsourcing

In our proposed scheme, the way of local data outsourcing is
to represent the collection of sets X to be a radix tree, encrypt
the radix tree, and outsource it to the cloud. The computa-
tional cost is mainly derived from encrypting the radix tree.
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Encrypting an internal nodes requires O(d2) computational
cost and encrypting a leaf node requires an AES encryption
operation. Meanwhile, the number of internal nodes and leaf
nodes in the radix tree heavily depends on the datasets, because
different datasets have different radix tree structures. Then,
the computational cost of encrypting the radix tree depends
on the datasets. For the modified ASPE scheme, each set
and its identity are respectively encrypted with our SCIE-Enc
construction and AES algorithm. Thus, encrypting a dataset
with n set records requires O(nd2) computational complexity
to encrypt the sets and n AES operations to encrypt their
identities.

Fig. 6(a) and Fig. 6(b) respectively plot the computational
cost of local data outsourcing varying with the size of the
dataset n on the Jeter dataset and MovieLens dataset. From
these figures, we can see that the computational cost of our
scheme and the modified ASPE scheme increases with n.
However, the increasing rate of the modified ASPE scheme
is far more larger than that of our scheme. Thus, the com-
putational cost of the modified ASPE scheme is higher than
that of our scheme. For example, when n = 25, 000, the
computational cost in our scheme on the MovieLens dataset
is about 1,000 ms, while that in the modified ASPE scheme
is about 3,200 ms, i.e., more than triple times higher than that
in our scheme.
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Fig. 6: The computational cost of local data outsourcing versus
the size of dataset n

B. Computational Cost of Set Containment Search

In this subsection, we evaluate the computational cost of
set containment search in the cloud. In our scheme, the
computation cost of query processing is related to the size of
dataset, i.e., n, the number of elements in the database, i.e., d,
and the size of the query set, i.e., |Q|. For the modified ASPE
scheme, the set containment query is processed by traversing
all set records, so its computational cost is related to n and d.
• The search time varies with n: Fig. 7(a) and Fig. 7(b) plot

the computational cost of set containment search varying with
n on Jeter and MovieLens datasets when the size of the query
set is 10. From these figures, we can see that the computational
cost in the modified ASPE scheme linearly increases with n
while that in our scheme is very steady and irrelevant to n.
This is because the search time in our scheme heavily depends
on the tree structure. If the distribution of the set records is
uniform, the increase of set records may not change the tree
structure too much. In this case, the set containment search

time over the tree will be steady and is not affected by the size
of the dataset. However, in the modified ASPE scheme, each
set record is encrypted separately, so it will be searched one by
one. Then, the computational cost will be linear to the size of
dataset. At the same time, we can see that the set containment
search in our scheme is much more efficient than that in the
modified ASPE scheme. For instance, when n = 25, 000, the
search time of our scheme on MovieLens dataset is about
80 ms, while that of the modified ASPE scheme is around
140 ms.
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Fig. 7: The computational cost of set containment search
varying with n when |Q| = 10
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Fig. 8: The computational cost of set containment search
varying with |Q| when n = 20, 000

• The search time varies with |Q|: Fig. 8(a) and Fig. 8(b)
plot the computational cost of set containment search varying
with |Q| on Jeter and MovieLens, when n is set to be 20,000.
From these two figures, we can see that the computational
cost of our scheme decreases with the increase of |Q|, while
that of the modified ASPE scheme is not affected by the
increase of |Q| too much. This is because the search process
of the modified ASPE scheme is to traverse all the set
records and is irrelevant to |Q|. For our scheme, the search
is processed by traversing the tree structure and it involves a
pruning strategy. Then, when |Q| increases, more tree paths
are likely to be pruned, so the computational cost can be
reduced correspondingly. In addition, the search efficiency of
our scheme is more efficient than that of the modified ASPE
scheme. For example, when |Q| = 18, the computational cost
of our scheme in MovieLens is about 80 ms, while that of the
ASPE-based scheme is around 120 ms.

C. Computational Cost of Query Token Generation
In this subsection, we evaluate the computational cost of

query token generation at the query user side. For the ASPE-
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based scheme, the query user just needs to generate one query
token and the computational cost is very low. For our proposed
scheme, the computational cost of the query token generation
is related to the size of query set, i.e., |Q|, and the number
of query tokens are randomly chosen, so we mainly evaluate
the computational cost of query token generation varying with
|Q|. As shown in Fig. 9(a) and Fig. 9(b), the computational
cost of query token generation in our scheme increases with
|Q|. Although the query token generation time of our scheme
is higher than that in the ASPE-based scheme, it is still very
low.
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Fig. 9: The computational cost of query token generation
varying with |Q|

D. Computational Cost of Query Result Recovery

In both our scheme and the ASPE-based scheme, the query
user recovers the query result by AES decryption operations.
Meanwhile, the computational cost is related to the number
of returned AES ciphertexts. For each encrypted ciphertext,
recovering the result requires two decryption operations, and
one AES encryption/decryption operation in our experiment is
about 9.9 µs. Thus, the query result recovering is very efficient
in both our scheme and the ASPE-based scheme.

VII. RELATED WORK

Set containment search is to find the containment relation-
ship between the query set and the sets in the database, and
it has attracted considerable attention from the academia and
industry. At the same time, it has been extensively studied in
[7]–[10]. However, most of the proposed schemes focus on
improving the efficiency of the set containment search over
plaintext domain, and do not take the data confidentiality into
consideration. Thus, they are not applicable to our scenario.

As discussed in Section I, the set containment search
problem can be transformed into the scalar product based
search problem when the set records are represented to be
fix-dimensional binary vectors. In the literature, many stud-
ies focus on achieving the privacy-preserving scalar product
computation [11]–[15], [22]–[25]. Among these studies, the
function-hiding scalar product encryption schemes [11]–[15]
can be applied to achieve scalar product based search over
outsourced data in the cloud environment. This is because
that these schemes can compute the scalar product between
the query vector and the vectors in the database over their
ciphertexts. With this property, given a query vector, these

schemes can filter out the vectors whose scalar product with
the query vector satisfies the scalar product search criteria.

Bishop et al. [11] first used asymmetric bilinear maps
to design a function-hiding scalar product scheme and the
security of the proposed scheme is based on the symmetric
external Diffie-Hellman assumption. Based on the work in
[11], Datta et al. proposed a new scheme, which can improve
the security of the scheme in [12] by removing the constraint
of adversaries’ queries. Later, Kim et al. [13] and Zhang et al.
[14] respectively proposed another two function-hiding scalar
product schemes. However, all of the above schemes are based
on public key cryptographic techniques, where the schemes in
[11]–[13] deployed the bilinear pairing maps and the scheme
in [14] employed a Paillier variant homomorphic encryption
scheme [16]. Thus, the computational cost of such schemes is
heavy.

Wong et al. [15] designed an asymmetric scalar-product-
preserving encryption (ASPE) scheme, which can also achieve
the scalar product based search over outsourced data. In this
scheme, the vectors in database and the query vectors are
encrypted by a real domain matrix. The matrix encryption is
efficient because it is a symmetric encryption and only involves
matrix multiplication of real domain. Thus, compared with
public key cryptographic techniques, the matrix encryption
scheme is the most efficient candidate to achieve set con-
tainment search. Nevertheless, on the one hand, the ASPE
scheme cannot resist against the known-plaintext attacks [17].
On the other hand, deploying the matrix encryption scheme
[15] to achieve set containment search still has a disadvantage
in query efficiency. In specific, when applying the scheme
in [15] to achieve set containment search, each set record
is encrypted into a ciphertext and outsourced to the cloud.
Given a query set, the cloud server needs to traverse all of
the set records in the database to find out the query result.
Thus, the query efficiency is linear to the size of the database.
When the database is large, it is inefficient to deploy the
scheme in [15] to achieve the set containment search. Although
the schemes [14], [26] introduced two pruning strategies to
accelerate the ASPE-based similarity query processing, the
introduced pruning strategies were designed for the scalar
product based top-k similarity queries and conjunction queries.
Thus, these pruning strategies are not applicable to our set
containment search. Therefore, it is still challenging to achieve
efficient and privacy-preserving set containment search.

VIII. CONCLUSION

In this paper, we have proposed an efficient and privacy-
preserving set containment search scheme. In specific, we
employed an asymmetric scalar-product-preserving encryption
technique to design an SCIE-Enc construction, which can
achieve both the set containment query and set intersection
query. Then, we built a radix tree to represent the set records.
Finally, we proposed an efficient and privacy-preserving set
containment search scheme by applying our SCIE-Enc con-
struction to encrypt and search the radix tree. The adoption
of set intersection query enables some tree paths of the radix
tree can be pruned when performing the set containment search
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over outsourced set records in the cloud. Thus, our proposed
scheme is much more efficient in set containment query
compared with existing solutions. In addition, the security
analysis and performance evaluation show that our proposed
scheme is indeed privacy-preserving and efficient. In our future
work, we will focus on improving the efficiency and security
of the set containment search. In addition, based on the set
containment search, we will design efficient set containment
join computation schemes.
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